Conformational gating of DNA conductance
نویسندگان
چکیده
DNA is a promising molecule for applications in molecular electronics because of its unique electronic and self-assembly properties. Here we report that the conductance of DNA duplexes increases by approximately one order of magnitude when its conformation is changed from the B-form to the A-form. This large conductance increase is fully reversible, and by controlling the chemical environment, the conductance can be repeatedly switched between the two values. The conductance of the two conformations displays weak length dependencies, as is expected for guanine-rich sequences, and can be fit with a coherence-corrected hopping model. These results are supported by ab initio electronic structure calculations that indicate that the highest occupied molecular orbital is more disperse in the A-form DNA case. These results demonstrate that DNA can behave as a promising molecular switch for molecular electronics applications and also provide additional insights into the huge dispersion of DNA conductance values found in the literature.
منابع مشابه
Channel Gating
Large conductance, voltageand Ca 2 -activated K (BK Ca ) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca 2 . Similar to an archeon Ca 2 -activated K channel, MthK, each of four subunits of BK Ca may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the Mth...
متن کاملConformational states of CFTR associated with channel gating: The role of ATP binding and hydrolysis
CFTR is a member of the traffic ATPase superfamily and a Cl- ion channel that appears to require ATP hydrolysis for gating. Analysis of single CFTR Cl- channels reconstituted into planar lipid bilayers revealed the presence of two open conductance states that are connected to each other and to the closed state by an asymmetric cycle of gating events. We show here that the transition between the...
متن کاملGating of Single Synthetic Nanopores by DNA Molecular Switching
Switchable ion channels that are made of membrane proteins play crucial role in cellular circuits. Thereby synthetic nanofluidic channels attract great interest owing to the novel ion transport properties that are helpful for understanding the biological ion channels and for the promising applications on ultrasensitive molecular detection and separation [1]. Here we report a synthetic nanopore-...
متن کاملTheoretical analysis of ion conductance and gating transitions in the OpdK (OccK1) channel.
Electrophysiological measurements have shown that the channel protein OpdK, also known as OccK1, from Pseudomonas aeruginosa shows three conductance substates. Although several experimental studies have been performed, a description of the gating transitions at the molecular level remains elusive. In the present investigation, molecular dynamics simulations have been employed to elucidate the c...
متن کاملDomains responsible for constitutive and Ca(2+)-dependent interactions between calmodulin and small conductance Ca(2+)-activated potassium channels.
Small conductance Ca(2+)-activated potassium channels (SK channels) are coassembled complexes of pore-forming SK alpha subunits and calmodulin. We proposed a model for channel activation in which Ca2+ binding to calmodulin induces conformational rearrangements in calmodulin and the alpha subunits that result in channel gating. We now report fluorescence measurements that indicate conformational...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015